Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; : 111047, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735454

RESUMEN

Lung adenocarcinoma stands as a leading global cause of cancer-related fatalities, with current therapeutic approaches remaining unsatisfactory. Given the association between elevated oxidative markers and the aggressive nature of cancer cells (including multidrug resistance and metastatic potential) that can predict poor outcome of lung adenocarcinoma patients, any compounds that interfere with their aberrant redox biology should be rationally explored as innovative intervention strategies. This study was designed to screen potential anticancer activities within nine newly synthesized organochalcogen - compounds characterized by the presence of oxygen, sulfur, or selenium elements in their structure and exhibiting antioxidant activity - and systematically evaluated their performance against cisplatin, the cornerstone therapeutic agent for lung adenocarcinoma. Our methodology involved the establishment of optimal conditions for generating single tumor spheroids using A549 human lung adenocarcinoma cell line. The initiation interval for spheroid formation was determined to be four days in vitro (DIV), and these single spheroids demonstrated sustained growth over a period of 20 DIV. Toxic dose-response curves were subsequently performed for each compound after 24 and 48 hours of incubation at the 12nd DIV. Our findings reveal that at least two of the synthetic organochalcogen compounds exhibited noteworthy anticancer activity, surpassing cisplatin in key parameters such as lower LD (Lethal Dose) 50, larger drug activity area, and maximum amplitude of effect, and are promising drugs for futures studies in the treatment of lung adenocarcinomas. Physicochemical descriptors and prediction ADME (absorption, distribution, metabolism, and excretion) parameters of selected compounds were obtained using SwissADME computational tool; Molinspiration server was used to calculate a biological activity score, and possible molecule targets were evaluated by prediction with the SwissTargetPrediction server. This research not only sheds light on novel avenues for therapeutic exploration but also underscores the potential of synthetic organochalcogen compounds as agents with superior efficacy compared to established treatments.

2.
J Trace Elem Med Biol ; 80: 127297, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37716209

RESUMEN

BACKGROUND: The new coronavirus (SARS-CoV-2) pandemic emerged in 2019 causing millions of deaths. Vaccines were quickly developed and made available in 2021. Despite the availability of vaccines, some subjects refuse to take the immunizing or present comorbities, therefore developing serious cases of COVID-19, which makes necessary the development of antiviral drugs. Previous studies have demonstrated that ebselen, a selenium-containing molecule, can inhibit SARS-CoV-2 Mpro. In addition, selenium is a trace element that has antiviral and anti-inflammatory properties. Zidovudine (AZT) has been widely used against HIV infections and its action against SARS-CoV-2 may be altered by the structural modification with organochalcogen moieties, but this hypothesis still needs to be tested. METHODS: In the present work we evaluated the Mpro inhibition capacity (in silico), the safety and antioxidant effect of six organochalcogen AZT-derivatives using the free-living nematode Caenorhabditis elegans, through acute (30 min) and chronic (48) exposure protocols. RESULTS: We observed that the molecules were safe at a concentration range of 1-500 µM and did not alter any toxicological endpoint evaluated. Furthermore, the molecules are capable to decrease the ROS formation stimulated by hydrogen peroxide, to modulate the expression of important antioxidant enzymes such superoxide-dismutase-3 and glutathione S-transferese-4 and to stimulate the translocation of the DAF-16 to the cell nucleus. In addition, the molecules did not deplete thiol groups, which reinforces their safety and contribution to oxidative stress resistance. CONCLUSIONS: We have found that compounds S116l (a Tellurium AZT-derivative) and S116h (a Selenium-AZT derivative) presented more promising effects both in silico and in vivo, being strong candidates for further in vivo studies.


Asunto(s)
Infecciones por VIH , Selenio , Vacunas , Animales , Humanos , Zidovudina/farmacología , Caenorhabditis elegans , Selenio/farmacología , Antioxidantes/farmacología , SARS-CoV-2 , Vacunas/farmacología
3.
Nanomaterials (Basel) ; 13(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37630891

RESUMEN

Multidrug resistance (MDR) is the main challenge in cancer treatment. In this sense, we designed transferrin (Tf)-conjugated PLGA nanoparticles (NPs) containing an organoselenium compound as an alternative to enhance the efficacy of cancer therapy and sensitize MDR tumor cells. Cytotoxicity studies were performed on different sensitive tumor cell lines and on an MDR tumor cell line, and the Tf-conjugated NPs presented significantly higher antiproliferative activity than the nontargeted counterparts in all tested cell lines. Due to the promising antitumor activity of the Tf-decorated NPs, further studies were performed using the MDR cells (NCI/ADR-RES cell line) comparatively to one sensitive cell line (HeLa). The cytotoxicity of NPs was evaluated in 3D tumor spheroids and, similarly to the results achieved in the 2D assays, the Tf-conjugated NPs were more effective at reducing the spheroid's growth. The targeted Tf-NPs were also able to inhibit tumor cell migration, presented a higher cell internalization and induced a greater number of apoptotic events in both cell lines. Therefore, these findings evidenced the advantages of Tf-decorated NPs over the nontargeted counterparts, with the Tf-conjugated NPs containing an organoselenium compound representing a promising drug delivery system to overcome MDR and enhance the efficacy of cancer therapy.

4.
Pharmaceutics ; 14(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35056975

RESUMEN

In this study, we developed PLGA nanoparticles (NPs) as an effective carrier for 5'-Se-(phenyl)-3-(amino)-thymidine (ACAT-Se), an organoselenium compound, nucleoside analogue that showed promising antitumor activity in vitro. The PLGA NPs were prepared by the nanoprecipitation method and modified with a pH-responsive lysine-based surfactant (77KL). The ACAT-Se-PLGA-77KL-NPs presented nanometric size (around 120 nm), polydispersity index values < 0.20 and negative zeta potential values. The nanoencapsulation of ACAT-Se increased its antioxidant (DPPH and ABTS assays) and antitumor activity in MCF-7 tumor cells. Hemolysis study indicated that ACAT-Se-PLGA-77KL-NPs are hemocompatible and that 77KL provided a pH-sensitive membranolytic behavior to the NPs. The NPs did not induce cytotoxic effects on the nontumor cell line 3T3, suggesting its selectivity for the tumor cells. Moreover, the in vitro antiproliferative activity of NPs was evaluated in association with the antitumor drug doxorubicin. This combination result in synergistic effect in sensitive (MCF-7) and resistant (NCI/ADR-RES) tumor cells, being especially able to successfully sensitize the MDR cells. The obtained results suggested that the proposed ACAT-Se-loaded NPs are a promising delivery system for cancer therapy, especially associated with doxorubicin.

5.
Front Oncol ; 8: 525, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524958

RESUMEN

Triple-negative breast cancer represents about 15% of all cases of breast cancer, and still represents a therapeutic challenge. 3'-Azido-3'-deoxythymidine (AZT) is a nucleoside reverse transcriptase inhibitor with antitumor activity. Chalcogenides compounds, such as selenium, are very important intermediates applied in organic synthesis. Our objective was to investigate the effect and the underlying cell death mechanisms of AZT and its derivatives, in human breast cancer cell lines. The inhibitory effect of AZT and derivatives (1072, 1073, and 1079) was determined by MTT assay (0.1, 1, 10, 50, and 100 µM for concentrations and times 4, 24, 48, and 72 h) and Live/Dead in tumor cell lines MCF-7, MDA-MB 231 and also in non-tumor cell line CHO. Gene expression profiles related to apoptosis were investigated by qRT-PCR and induction of apoptosis was investigated by flow cytometry. MTT and Live/Dead assays showed that AZT derivatives decreased the rate of cell proliferation at concentrations of 50 and 100 µM in tumor cell lines MCF-7 and MDA-MB 231 while the commercial AZT presented a low antitumoral potential in all strains tested. In flow cytometry analysis we demonstrated that derivatives of AZT induced apoptosis, with an increase in both initial and late stages in both tumor cell lines evaluated, especially in MDA-MB 231. Our data show that the AZT derivative 1072 increased the expression of transcripts of the genes caspase 3 and 8 in MDA-MB 231 cell line when compared to control, suggesting that the extrinsic pathway of apoptosis was activated. In conclusion, derivatives of AZT, especially 1072, induce cytotoxicity in vitro in the triple negative breast cancer cell line through activation of the extrinsic pathway of apoptosis. These compounds containing selenium in its formulation are potential therapeutic agents for breast cancer.

6.
J Cell Biochem ; 118(4): 709-717, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27496677

RESUMEN

This study aims to investigate the protective effect of p-chloro-phenyl-selenoesterol [PCS; 0,2 mg/kg; 10 ml/kg i.g.) in colitis induced by 2,4,6-trinitrobenzene sulfonic acid [TNBS; 2 mg/100 µl 50% ethanol; intrarectally) in mice. Several parameters including weight, length, histological analyses determination, thiobarbituric acid reactive species, reactive species levels, superoxide dismutase, catalase, and myeloperoxidase (MPO) activity of colon were evaluated. The serum levels of tumor necrosis factor alpha [TNF-α) and interleukin 6 [IL-6) were also assessed. Treatment with PCS reduced the clinical and histopathologic severity of TNBS-induced colitis, characterized by colon length reduction and increased colon weight and microscopic intestinal inflammation. The therapeutic effects of PCS in this model were associated with significant decrease in proinflammatory cytokines TNF-α and IL-6 and decrease in MPO activity. Furthermore, combined with improvements in inflammatory parameters, treatment with the PCS was able to decrease oxidative stress and to prevent the decrease in antioxidant defenses in animals with TNBS-induced colitis. This finding suggests that PCS can improve experimental colitis in mice and it could be a potential therapeutic agent for the treatment of patients with IBD. J. Cell. Biochem. 118: 709-717, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Compuestos de Organoselenio/farmacología , Animales , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Femenino , Mediadores de Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Ratones , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Ácido Trinitrobencenosulfónico/toxicidad
7.
Eur J Pharmacol ; 781: 25-35, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27102337

RESUMEN

This study investigated the potential p-chloro-selenosteroid (PCS) anti-inflammatory effect in different animal models of acute inflammation. In order to determine a time- and a dose-curve response of action, female adult Swiss mice (25-35g) were divided in different groups and pretreated by the intragastric route (i.g.) with PCS (5-10mg/kg) and after the specific times (5, 30 and 60min) the ear inflammation was induced with croton oil (2.5%, 20µl). The ear edema, myeloperoxidase (MPO) activity and histological analyses were performed. In a second experiment, the pleurisy model was used to determine the PCS protective effect (10mg/kg, i.g., 30min before induction) in the inflammatory and oxidative alterations induced by an intrapleural injection of a 1% carrageenan solution (0.1ml) in exudate and lung samples. Dexamethasone (1mg/kg, i.g.) was used as positive control for both models. Statistical analysis was performed through a One-Way ANOVA test followed by the Newman-Keuls' test. Pretreatment of 30min with PCS, only at a dose of 10mg/kg, decreased ear edema and the MPO activity as well as the histological alterations induced by croton oil. In the pleurisy model, PCS (10mg/kg, i.g.; 30min) reduced the leukocyte counts, histological alterations, MPO and adenosine deaminase activities, oxidative damage and the non-enzymatic antioxidant defense imbalance. PCS had a similar anti-inflammatory profile to dexamethasone; however, it showed a better antioxidant effect. PCS had anti-inflammatory and antioxidant actions in two well established inflammation models in mice.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Edema/metabolismo , Edema/patología , Pleuresia/metabolismo , Pleuresia/patología , Esteroides/farmacología , Enfermedad Aguda , Adenosina Desaminasa/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Carragenina/farmacología , Relación Dosis-Respuesta a Droga , Edema/inducido químicamente , Edema/tratamiento farmacológico , Femenino , Recuento de Leucocitos , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Malondialdehído/metabolismo , Ratones , Nitratos/metabolismo , Nitritos/metabolismo , Peroxidasa/metabolismo , Pleuresia/inducido químicamente , Pleuresia/tratamiento farmacológico , Esteroides/uso terapéutico , Factores de Tiempo
8.
Int J Nanomedicine ; 10: 5663-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26379436

RESUMEN

Selenium compounds, such as diphenyl diselenide (DPDS), have been shown to exhibit biological activity, including antioxidant effects. However, the use of DPDS in pharmacology is limited due to in vivo pro-oxidative effects. In addition, studies have shown that DPDS-loaded nanocapsules (DPDS-NCS) have greater bioavailability than free DPDS in mice. Accordingly, the aim of this study was to investigate the antioxidant properties of DPDS-NCS in vitro and biological activity in mice. Our in vitro results suggested that DPDS-NCS significantly reduced the production of reactive oxygen species and Fe(II)-induced lipid peroxidation (LPO) in brain. The administration of DPDS-NCS did not result in death or change the levels of endogenous reduced or oxidized glutathione after 72 hours of exposure. Moreover, ex vivo assays demonstrated that DPDS-NCS significantly decreased the LPO and reactive oxygen species levels in the brain. In addition, the highest dose of DPDS-NCS significantly reduced Fe(II)- and sodium nitroprusside-induced LPO in the brain and Fe(II)-induced LPO in the liver. Also, δ-aminolevulinate acid dehydratase within the brain was inhibited only in the highest dose of DPDS-NCS. In conclusion, our data demonstrated that DPDS-NCS exhibited low toxicity in mice and have significant antioxidant characteristics, indicating that nanoencapsulation is a safer method of DPDS administration.


Asunto(s)
Derivados del Benceno/farmacología , Depuradores de Radicales Libres/farmacología , Nanocápsulas/química , Compuestos de Organoselenio/farmacología , Animales , Derivados del Benceno/química , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Fenómenos Químicos , Relación Dosis-Respuesta a Droga , Depuradores de Radicales Libres/química , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Nitroprusiato/química , Nitroprusiato/farmacología , Compuestos de Organoselenio/química , Porfobilinógeno Sintasa/antagonistas & inhibidores , Porfobilinógeno Sintasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Selenio/química , Compuestos de Selenio/farmacología , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
9.
Pharm Biol ; 53(3): 395-403, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25489627

RESUMEN

CONTEXT: The organoselenium compounds have been described to demonstrate several biological activities, including pain management. OBJECTIVE: This study investigated the antinociceptive, hyperalgesic, and toxic effects of oral administration of bis(4-methylbenzoyl) diselenide (BMD) in mice. MATERIALS AND METHODS: The antinociceptive and anti-hyperalgesic effects of BMD (1, 5, 10, 25, and 50 mg/kg, p.o.) were evaluated using models of nociception: formalin, capsaicin, bradykinin (BK), cinnamaldehyde, phorbol myristate acetate (PMA), 8-bromo-cAM, and glutamate-induced nociception; and mechanical hyperalgesia induced by carrageenan (Cg) or complete Freund's adjuvant (CFA). The acute toxicity was evaluated by biochemical markers for hepatic and renal damages. RESULTS: BMD significantly inhibited the licking time of the injected paw in the early and late phases of a formalin test with ED50 values of 14.2 and 10.8 mg/kg, respectively. This compound reduced nociception produced by capsaicin (ED50 of 32.5 mg/kg), BK (ED50 of 24.6 mg/kg), glutamate (ED50 of 28.7 mg/kg), cinnamaldehyde (ED50 of 18.9 mg/kg), PMA (ED50 of 9.6 mg/kg), and 8-bromo-cAMP (ED50 of 24.8 mg/kg). In the glutamate test, the pretreatment with nitric oxide (NO) precursor, L-arginine, reversed antinociception caused by BMD or N(ω)-nitro-L-arginine (L-NOARG), but the effect of BMD was not abolished by naloxone. Mechanical hyperalgesia induced by Cg and CFA was attenuated by BMD, 70 ± 4% and 65 ± 4%, respectively. Furthermore, a single oral dose of BMD did not change plasma aspartate (AST) and alanine aminotransferase (ALT) activities or urea and creatinine levels. CONCLUSION: BMD demonstrated as a promising compound because of the antinociceptive and anti-hyperalgesic properties in mice.


Asunto(s)
Analgésicos/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Compuestos de Organoselenio/uso terapéutico , Sustancias Protectoras/uso terapéutico , Analgésicos/farmacología , Animales , Relación Dosis-Respuesta a Droga , Hiperalgesia/patología , Masculino , Ratones , Compuestos de Organoselenio/farmacología , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Sustancias Protectoras/farmacología
10.
J Colloid Interface Sci ; 439: 154-61, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25463188

RESUMEN

A set of seven different palladium nanoparticle (PdNP) systems stabilized by small amounts (1.0mg/mL) of structurally related macromolecular capping agents were comparatively tested as catalyst in p-nitrophenol (Nip) reduction and Suzuki cross-coupling reactions. The observed rate constants (kobs) for Nip reduction were in the range of 0.052-3.120×10(-2)s(-1), and the variation reflected the effects of polymer chain conformation, ionic strength and palladium-polymer complex coordination. Macromolecules featuring pendant pyridyl moieties or inverse temperature-dependent solubility were found to be unsuitable capping agents for PdNPs catalysts, despite being active. The catalytic activity in Suzuki cross-coupling reactions followed the same behavior; the most active particles in the Nip reaction also mediated the cross-coupling reaction providing the expected products in quantitative yields under relatively mild conditions after only 4h at 50°C. Experiments involving the successive addition of reactants and catalyst recovery/re-use indicated that the recycling potential was comparable to those of the standards used in this field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...